Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey, we present the UV metal absorption features in the circumgalactic medium (CGM) near the Higas disk (<4.5RHI) of 31 nearby galaxies through quasar absorption-line spectroscopy. Of the ions under study, Siiiiλ1206 was most frequently detected (18 of 31 sight lines), while Ciiλ1334 and Siiiλ1260 were detected in 17 and 15 of 31 sight lines, respectively. Many components were consistent with photoionization equilibrium models; most of the cold and cool gas phase clouds were found to have lengths smaller than 2 kpc. Sight lines with smaller impact parameters (ρ) normalized by the galaxy’s virial radius (Rvir) and Hiradius (RHI) tend to have more components and larger rest-frame equivalent widths (Wr) than those that probe the CGM at larger radii. In particular, we find that the location of metals are better traced byρ/RHIrather than the traditionalρ/Rvir. Larger covering fractions are found closer to galaxies, with a radial decline that depends on theWrlimit used. Our results provide new insights into the spatial distribution of metals around the Hidisks of low-redshift galaxies.more » « lessFree, publicly-accessible full text available March 27, 2026
-
Abstract As a part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey, we investigate indirect evidence of gas inflow into the disk of the galaxyNGC 99. We combine optical spectra from the Binospec spectrograph on the MMT telescope with optical imaging data from the Vatican Advanced Technology Telescope, radio Hi21 cm emission images from the NSF Karl G. Jansky’s Very Large Array, and UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope. We measure emission lines (Hα, Hβ, [Oiii]λ5007, [Nii]λ6583, and [Sii]λ6717, 31) in 26 Hiiregions scattered about the galaxy and estimate a radial metallicity gradient of −0.017 dex kpc−1using the N2 metallicity indicator. Two regions in the sample exhibit an anomalously low metallicity (ALM) of 12 + log(O/H) = 8.36 dex, which is ∼0.16 dex lower than other regions at that galactocentric radius. They also show a high difference between their Hiand Hαline of sight velocities on the order of 35 km s−1. Chemical evolution modeling indicates gas accretion as the cause of the ALM regions. We find evidence for corotation between the interstellar medium ofNGC 99and Lyαclouds in its circumgalactic medium, which suggests a possible pathway for low metallicity gas accretion. We also calculate the resolved Fundamental Metallicity Relation (rFMR) on subkiloparsec scales using localized gas-phase metallicity, stellar mass surface density, and star formation rate surface density. The rFMR shows a similar trend as that found by previous localized and global FMR relations.more » « lessFree, publicly-accessible full text available November 25, 2025
-
Abstract We explore the growth of the stellar disks in 14 nearby spiral galaxies as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey. We study the radial distribution of specific star formation rates (sSFRs) and investigate the ratio of the difference in the outer and inner sSFRs (ΔsSFR= sSFRout– sSFRin) of the disk and the total sSFR, ΔsSFR/sSFR, to quantify disk growth. We find ΔsSFR/sSFR and the Higas fraction to show a mild correlation of Spearman’sρ= 0.30, indicating that star formation and disk growth are likely to proceed outward in galactic disks with high Higas fractions. The Higas fractions and ΔsSFR/sSFR of the galaxies also increase with the distance to the nearestL⋆neighbor, suggesting that galaxies are likely to sustain the cold gas in their interstellar medium and exhibit inside-out growth in isolated environments. However, the Hicontent in their circumgalactic medium (CGM), probed by the Lyαequivalent width (WLyα) excess, is observed to be suppressed in isolated environments, as is apparent from the strong anticorrelation between theWLyαexcess and the distance to the fifth nearestL⋆neighbor (Spearman’sρ= −0.62). As expected,WLyαis also found to be suppressed in cluster galaxies. We find no relation between theWLyαexcess of the detected CGM absorber and ΔsSFR/sSFR, implying that the enhancement and suppression of the circumgalactic Higas does not affect the direction in which star formation proceeds in a galactic disk or vice versa.more » « less
-
Abstract Galaxy formation and evolution are regulated by the feedback from galactic winds. Absorption lines provide the most widely available probe of winds. However, since most data only provide information integrated along the line of sight, they do not directly constrain the radial structure of the outflows. In this paper, we present a method to directly measure the gas electron density in outflows (ne), which in turn yields estimates of outflow cloud properties (e.g., density, volume filling factor, and sizes/masses). We also estimate the distance (rn) from the starburst at which the observed densities are found. We focus on 22 local star-forming galaxies primarily from the COS Legacy Archive Spectroscopic SurveY (CLASSY). In half of them, we detect absorption lines from fine-structure excited transitions of Siii(i.e., Siii*). We determinenefrom relative column densities of Siiiand Siii*, given Siii* originates from collisional excitation by free electrons. We find that the derivednecorrelates well with the galaxy’s star formation rate per unit area. From photoionization models or assuming the outflow is in pressure equilibrium with the wind fluid, we getrn∼ 1–2r*or ∼5r*, respectively, wherer*is the starburst radius. Based on comparisons to theoretical models of multiphase outflows, nearly all of the outflows have cloud sizes large enough for the clouds to survive their interaction with the hot wind fluid. Most of these measurements are the first ever for galactic winds detected in absorption lines and, thus, will provide important constraints for future models of galactic winds.more » « less
-
Abstract We present our investigation of the extended ultraviolet (XUV) disk galaxy, NGC 3344, conducted as part of Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium survey. We use surface and aperture photometry of individual young stellar complexes to study star formation and its effect on the physical properties of the interstellar medium. We measure the specific star formation rate (sSFR) and find it to increase from 10 −10 yr −1 in the inner disk to >10 −8 yr −1 in the extended disk. This provides evidence for inside-out disk growth. If these sSFRs are maintained, the XUV disk stellar mass can double in ∼0.5 Gyr, suggesting a burst of star formation. The XUV disk will continue forming stars for a long time due to the high gas depletion times ( τ dep ). The stellar complexes in the XUV disk have high-Σ H I and low-Σ SFR with τ dep ∼ 10 Gyr, marking the onset of a deviation from the traditional Kennicutt–Schmidt law. We find that both far-ultraviolet (FUV) and a combination of FUV and 24 μ m effectively trace star formation in the XUV disk. H α is weaker in general and prone to stochasticities in the formation of massive stars. Investigation of the circumgalactic medium at 29.5 kpc resulted in the detection of two absorbing systems with metal-line species: the stronger absorption component is consistent with gas flows around the disk, most likely tracing inflow, while the weaker component is likely tracing corotating circumgalactic gas.more » « less
-
Abstract We report the discovery of two kinematically anomalous atomic hydrogen (H i ) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey in H i 21 cm at 3.3 km s −1 spectroscopic and 44″ × 30″ spatial resolution using the Karl G. Jansky Very Large Array. 15 15 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M 100. The velocity offsets of 40 km s −1 observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in H α and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(H i ) ≤1.7 × 10 13 cm −2 (3 σ ). Since M 100 is in the Virgo cluster, the nonexistence of neutral/cool CGM is a likely pathway for turning it into a red galaxy.more » « less
-
Abstract Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range.more » « less
-
Abstract We present a multiwavelength study of IC 860, a nearby post-starburst galaxy at the early stage of transitioning from blue and star forming to red and quiescent. Optical images reveal a galaxy-wide, dusty outflow originating from a compact core. We find evidence for a multiphase outflow in the molecular and neutral gas phase from the CO position–velocity diagram and NaD absorption features. We constrain the neutral mass outflow rate to be ∼0.5M⊙yr−1, and the total hydrogen mass outflow rate to be ∼12M⊙yr−1. Neither outflow component seems able to escape the galaxy. We also find evidence for a recent merger in the optical images, CO spatial distribution, and kinematics, and evidence for a buried active galactic nucleus in the optical emission line ratios, mid-IR properties, and radio spectral shape. The depletion time of the molecular gas reservoir under the current star formation rate is ∼7 Gyr, indicating that the galaxy could stay at the intermediate stage between the blue and red sequence for a long time. Thus the timescales for a significant decline in star formation rate (quenching) and gas depletion are not necessarily the same. Our analysis supports the quenching picture where outflows help suppress star formation by disturbing rather than expelling the gas and shed light on possible ongoing activities in similar quenching galaxies.more » « less
An official website of the United States government
